196 research outputs found

    Interannual Variation in Climate Contributes to Contingency in Post-Fire Restoration Outcomes in Seeded Sagebrush Steppe

    Get PDF
    Interannual variation, especially weather, is an often-cited reason for restoration “failures”; yet its importance is difficult to experimentally isolate across broad spatiotemporal extents, due to correlations between weather and site characteristics. We examined post-fire treatments within sagebrush-steppe ecosystems to ask: (1) Is weather following seeding efforts a primary reason why restoration outcomes depart from predictions? and (2) Does the management-relevance of weather differ across space and with time since treatment? Our analysis quantified range-wide patterns of sagebrush (Artemisia spp.) recovery, by integrating long-term records of restoration and annual vegetation cover estimates from satellite imagery following thousands of post-fire seeding treatments from 1984 to 2005. Across the Great Basin, sagebrush growth increased in wetter, cooler springs; however, the importance of spring weather varied with sites\u27 long-term climates, suggesting differing ecophysiological limitations across sagebrush\u27s range. Incorporation of spring weather, including from the “planting year,” improved predictions of sagebrush recovery, but these advances were small compared to contributions of time-invariant site characteristics. Given extreme weather conditions threatening this ecosystem, explicit consideration of weather could improve the allocation of management resources, such as by identifying areas requiring repeated treatments; but improved forecasts of shifting mean conditions with climate change may more significantly aid the prediction of sagebrush recovery

    Aerodynamic Roughness Length Estimation with Lidar and Imaging Spectroscopy in a Shrub-Dominated Dryland

    Get PDF
    The aerodynamic roughness length (Z0m) serves an important role in the flux exchange between the land surface and atmosphere. In this study, airborne lidar (ALS), terrestrial lidar (TLS), and imaging spectroscopy data were integrated to develop and test two approaches to estimate Z0m over a shrub dominated dryland study area in south-central Idaho, USA. Sensitivity of the two parameterization methods to estimate Z0m was analyzed. The comparison of eddy covariance-derived Z0m and remote sensing-derived Z0m showed that the accuracy of the estimated Z0m heavily depends on the estimation model and the representation of shrub (e.g., Artemisia tridentata subsp. wyomingensis) height in the models. The geometrical method (RA1994) led to 9 percent (~0.5 cm) and 25% (~1.1 cm) errors at site 1 and site 2, respectively, which performed better than the height variability-based method (MR1994) with bias error of 20 percent and 48 percent at site 1 and site 2, respectively. The RA1994 model resulted in a larger range of Z0m than the MR1994 method. We also found that the mean, median and 75th percentiles of heights (H75) from ALS provides the best Z0 m estimates in the MR1994 model, while the mean, median, and MLD (Median Absolute Deviation from Median Height), as well as AAD (Mean Absolute Deviation from Mean Height) heights from ALS provides the best Z0m estimates in the RA1994 model. In addition, the fractional cover of shrub and grass, distinguished with ALS and imaging spectroscopy data, provided the opportunity to estimate the frontal area index at the pixel-level to assess the influence of grass and shrub on Z0m estimates in the RA1994 method. Results indicate that grass had little effect on Z0m in the RA1994 method. The Z0m estimations were tightly coupled with vegetation height and its local variance for the shrubs. Overall, the results demonstrate that the use of height and fractional cover from remote sensing data are promising for estimating Z0m, and thus refining land surface models at regional scales in semiarid shrublands

    A regulatory role of polycystin-1 on cystic fibrosis transmembrane conductance regulator plasma membrane expression.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is caused by genetic mutations in either PKD1 or PKD2, the genes that encode polycystin-1 (PC-1) and polycystin-2 (PC-2), respectively. ADPKD is characterized by the formation of multiple, progressive, fluid-filled renal cysts. To elucidate the mechanism of fluid secretion by ADPKD cysts, we examined the effect of PC-1 on the plasma membrane expression of cystic fibrosis transmembrane conductance regulator (CFTR), a key Cl(-) secretory protein. Five stably transfected MDCK lines were used in this study: two transfected with empty vector (control cells) and three expressing human PC-1 (PC-1 cells). The cAMP-induced endogenous short circuit currents (I(sc)) were smaller in PC-1 cells than in control cells. Compared to control cells, PC-1 cells transiently expressing pEGFP-CFTR showed significant reduction of whole cell cAMP-activated Cl(-) currents. Cell surface biotinylation experiments also indicated a reduction in surface expression of CFTR in PC-1 cells compared to control. Furthermore, studies using CHO cells transiently expressing PC-1 and CFTR suggest the importance of the PC-1 COOH-terminus in the observed reduction of CFTR plasma membrane expression. No differences in either endogeneous K(+) currents or P2Y receptor responses were observed between PC-1 and control cells, indicating the specificity of PC-1's action. These results indicate that PC-1 selectively maintains low cell surface expression of CFTR. Moreover, these findings suggest that the malfunction of PC-1 enhances plasma membrane expression of CFTR, thus causing abnormal Cl(-)secretion into the cyst lumen

    Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    Get PDF
    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. Key messages: Multiple mRNA transcripts are generated for Pkhd1 in renal tissues Pkhd1 transcription is modulated by standard splice elements and effectors Mutations in splice motifs may alter splicing to generate nonfunctional peptides

    Shared Care, Elder and Family Member Skills Used to Manage Burden

    Get PDF
    Aim. The aim of this paper is to further develop the construct of Shared Care by comparing and contrasting it to related research, and to show how the construct can be used to guide research and practice. Background. While researchers have identified negative outcomes for family caregivers caused by providing care, less is known about positive aspects of family care for both members of a family dyad. Understanding family care relationships is important to nurses because family participation in the care of chronically ill elders is necessary to achieve optimal outcomes from nursing interventions. A previous naturalistic inquiry identified a new construct, Shared Care, which was used to describe a family care interaction that contributed to positive care outcomes. Methods. A literature review was carried out using the databases Medline, CINAHL, and Psych-info and the keywords home care, care receiver, disability, family, communication, decision-making and reciprocity. The results of the review were integrated to suggest how Shared Care could be used to study care difficulties and guide interventions. Results. The literature confirmed the importance of dyad relationships in family care. Shared Care extended previous conceptualizations of family care by capturing three critical components: communication, decision-making, and reciprocity. Shared Care provides a structure to expand the conceptualization of family care to include both members of a care dyad and account for positive and negative aspects of care. Conclusions. The extended view provided by the construct of Shared Care offers practitioners and scholars tools to use in the context of our ageing population to improve the effectiveness of family care relationships

    Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America

    Get PDF
    Alien grass invasions in arid and semi-arid ecosystems are resulting in grass–fire cycles and ecosystem-level transformations that severely diminish ecosystem services. Our capacity to address the rapid and complex changes occurring in these ecosystems can be enhanced by developing an understanding of the environmental factors and ecosystem attributes that determine resilience of native ecosystems to stress and disturbance, and resistance to invasion. Cold desert shrublands occur over strong environmental gradients and exhibit significant differences in resilience and resistance. They provide an excellent opportunity to increase our understanding of these concepts. Herein, we examine a series of linked questions about (a) ecosystem attributes that determine resilience and resistance along environmental gradients, (b) effects of disturbances like livestock grazing and altered fire regimes and of stressors like rapid climate change, rising CO2, and N deposition on resilience and resistance, and (c) interacting effects of resilience and resistance on ecosystems with different environmental conditions. We conclude by providing strategies for the use of resilience and resistance concepts in a management context. At ecological site scales, state and transition models are used to illustrate how differences in resilience and resistance influence potential alternative vegetation states, transitions among states, and thresholds. At landscape scales management strategies based on resilience and resistance—protection, prevention, restoration, and monitoring and adaptive management—are used to determine priority management areas and appropriate actions

    Predictors and patterns of participant adherence to a cortisol collection protocol

    Get PDF
    Cortisol, a stress-related hormone, has been measured in many psychoimmunological studies via collection of saliva; however, patterns of participant adherence to protocol procedures are rarely described in the literature

    Engaging African American breast cancer survivors in an intervention trial: culture, responsiveness and community

    Get PDF
    Younger breast cancer survivors often lead extremely busy lives with multiple demands and responsibilities, making them difficult to recruit into clinical trials. African American women are even more difficult to recruit because of additional historical and cultural barriers. In a randomized clinical trial of an intervention, we successfully used culturally informed, population-specific recruitment and retention strategies to engage younger African-American breast cancer survivors

    MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice

    Get PDF
    During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1–deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1–deficient sperm flagella, the characteristic arrangement of “9+2” microtubules and outer dense fibers are completely disrupted. In addition, MNS1–deficient mice display situs inversus and hydrocephalus. MNS1–deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions

    Strong microsite control of seedling recruitment in tundra

    Get PDF
    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental gradient in dry tundra. A survey of natural seed rain and seedling density in vegetation was combined with observations of the establishment of 14 species after sowing into intact or disturbed vegetation. Although seed rain density was closely correlated with natural seedling establishment, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined by the earliest stages in seedling emergence, which again are closely linked to microsite quality. A fuller understanding of microsite effects on recruitment with implications for plant community assembly and vegetation change is provided
    corecore